Section 7.3 Run-Length Ceding 171

7.3 RUN-LENGTH CODING

Instead of assuming a memoryless source, run-length coding (R1.C) exploits mermory present
in the information source. It is one of the simplest forms of data compression. The basic
idea is that if the information sonrce we wish to compress has the property that symbols
tend to formm continuous groups, instead of coding each symbol in the group individually,
we can code one such symbol and the length of the group.

As an example, consider a bifevel image (one with only 1-bit black and white pixels)
with monotone regions. This information source can be efficiently coded using run-length
coding. In fact, since there are only two symbols, we do not even need to code any symbol
at the start of each run. Instead, we can assume that the starting run is always of a particular
color (either black or white) and simply code the length of each run.

The above description is the one-dimmensional run-length coding algorithm. A two-
dimensional variant of it is usually used to code bilevel images. This algorithm uses the
coeded run information in the previous row of the image to code the run in the current row.
A full description of this algorithm can be found in [5].

7.4 VARIABLE-LENGTH CODING (VLC)

Since the entropy indicates the information content in an information source S, it leads to
a family of coding methods commonly known as entropy coding methods. As described
earlier, variable-length coding (VLC) is one of the best-known such methods. Here, we
will study the Shannon-Fano algorithm, Huffman coding, and adaptive Huffman coding.

7.41 Shannon-Fano Algorithm

The Shannon—Fano algorithm was independently developed by Shannon at Bell Labs and
Robert Fano at MIT [6]. To illustrate the algorithm, let’s suppose the symbols to be coded
are the characters in the word HELLO. The frequency count of the symbols is

Symbol | H E L O
Count 1 1 2 1

The enceding steps of the Shannon—Fano algorithm can be presented in the following
top-down manner:

1. Sort the symbols according to the frequency count of their occurrences.

2. Recursively divide the symbols into two parts, each with approximately the same
number of counts, until all parts contain only one symbol.

A natural way of implementing the above procedure is to build a binary tree. As a
convention, let’s assign bit 0 to its left branches and 1 to the right branches,

172 Chapter7 L.ossless Compression Algorithms

(3)
/1\
L:(2) H,E,0:(3)
(a)

E:(1) O:(1)
(©)

FIGURE 7.3: Coding tree for HELLO by the Shannon—Fano algorithm.

Initially, the symbols are sorted as LHEQ, As Figure 7.3 shows, the first division yields
two parts: (a) L with a count of 2, denoted as L:(2); and (b) H, E and O with a total count
of 3, denoted as H,E,0:(3), The second division yields H:(1) and E,Q:(2), The last division
is E:(1) and O:(1).

Table 7.1 summarizes the result, showing each symbol, its frequency count, information
content{ log, i) , resulting codeword, and the number of bits needed to encode each symbol

in the word HELLO. The total number of bits used is shown at the bottom.
To revisit the previous discussion on entropy, in this case,

1 1 1 1
n = pL-logy,— + pu -logy — + pg - logy — + po - logy—-
PL PH PE " po

= 04x132+02%x2324+02%x232+02x232=192

TABLE 7.1: One result of performing the Shannon—Fane algorithm on HELLO.

Symbol | Count | log, ﬁ Code | Number of bits used
C L 2 1.32 0 2
H 1 2.32 10 2
E 1 2.32 110 3
O 1 2.32 111 3

TOTAT number of bits: 10

Section 7.4 Variable-Length Coding (VLC) 173

3) ' 5}

/\
LH:3) E,C:(2)
L:(2) H:(1) E:(1) O:(1)
(a) (b)

FIGURE 7.4: Another coding tree for HELLO by the Shannon-Fano algorithin.

This suggests that the minimum average number of bits to code each character in the word
HELLO would be at least 1,92, In this example, the Shannon-Fano algorithm uses an
average of 10/5 = 2 bits to code each symbol, which is fairly close to the lower bound of
1.92. Apparently, the result is satisfactory.

Tt should be pointed out that the outcome of the Shannon-Fano algorithm is not neces-
sarily unique. For instance, at the first division in the above example, it would be equally
valid to divide into the two parts L,H:(3) and E,O:(2). This would result in the coding in
Figure 7.4. Table 7.2 shows the codewords are different now. Also, these two sets of code-
words may behave differently when errors are present. Coincidentally, the total number of
bits required to encode the world HELLO remains at 10.

The Shannon-Fano algorithm delivers satisfactory coding results for data compression,
but it was soon outperformed and overtaken by the Huffman coding method.

7.4.2 Huffman Coding

First presented by David A. Huffman in a 1952 paper {7], this methed attracted an over-
whelming amount of research and has been adopted in many important and/or commercial
applications, such as fax machines, JPEG, and MPEG.

In contradistinction to Shannon—Fano, which is top-down, the encoding steps of the
Huffman algorithm are described in the following bottom-up manner. Let’s use the same
example word, HELLO. A similar binary coding tree will be used as above, in which the
left branches are coded 0 and right branches 1. A simple list data structure is also used.

TABLE 7.2: Another result of performing the Shannon—Fano algorithm on HELLO.

Symbol | Count | log, % Code | Number of bits used
L 2 1.32 00 4
H 1 2.32 01 2
E 1 2.32 10 2
o) ! 2.32 11 2

TOTAL number of bits: 10

174 Chapter 7 Lossless Compression Algorithms

Pi:(2) ' P2:(3)
/0\ 0
B:(1) O:(1)
E:(1) o:(1)
(a))

ELD O:.(1)
{c)

FIGURE 7.5: Coding tree for HELLO using the Huffman algorithm.

ALGORITHM 7.1 HUFFMAN CODING

1. Initialization: put all symbols on the list sorted according to their frequency counts.
2. Repeat until the list has only one symbol left.

(a) From the list, pick two symbols with the lowest frequency counts. Form a
Huffman subtree that has these two symbols as child nodes and create a parent
node for them.

{b) Assign the sum of the children’s frequency counts to the parent and insert it into
the list, such that the order is maintained. '

(¢) Delete the chifdren from the list.

3. Assign a codeword for each leaf based on the path from the root.~

~ Inthe above figure, new symbols P'L, P2, P3 are created to refer to the parent nodes in
the Huffman coding tree. The contents in the list are illustrated below:

After initialization: LHEOC
After iteration (a): LPIH
After iteration (b): LP2
After iteration (c): P3

Section 7.4 Variable-Length Coding (VLC) 175

For this simple example, the Huffman algorithm apparently generated the same coding
-result as one of the Shannon—Fano results shown in Figure 7.3, although the results are
usually better. The average number of bits used to code each character is also 2, (i.e.,
(14142434 3)/5 =2). As another simple example, consider a text string containing
a set of characters and their frequency counts as follows: A:(15), B:(7), C:(6), D:(6) and
E:(5). Itis easy to show that the Shannon--Fano algorithm needs a total of 89 bits to encode
this string, whereas the Huffman algorithm needs only 87.

As shown above, if correct probabilities (“prior statistics™) are available and accurate,
the Huffman coding method produces good compression results. Decoding for the Huffman
coding is trivial as long as the statistics and/or coding tree are sent before the data to be
compressed (in the file header, say). This overhead becomes negligible if the data file is
sufficiently large.

The following are important properties of Huffman coding:

¢ Unique prefix property. No Huffman code is a prefix of any other Huffman code.
For instance, the code 0 assigned to L in Figure 7.5(c) is not a prefix of the code 10
for H or 110 for E or 111 for O; nor is the code 10 for H a prefix of the code 110 for
Eor 111 for O. It turns out that the unique prefix property is guaranteed by the above
Huffman algorithm, since it always places all input symbols at the leaf nodes of the
Huffman tree. The Huffman code is one of the prefix codes for which the nnique
prefix property holds. The code generated by the Shannon—Fano algorithm is another
such example.

This property is essential and also makes for an efficient decoder, since it precludes
any ambiguity in decoding. In the above example, if a bit 0 is received, the decoder can
immediately produce a symbel L without waiting for any more bits to be transmitted.

e Optimality. The Huffman code is a minimium-redundancy code, as shown in Huff-
man’s 1952 paper [7]. It has been proven [8, 2] that the Huffman code is optimal for
a given data model (i.e., a given, accurate, probability distribution):

— The two least frequent symbols will have the same length for their Huffman
codes, differing only at the last bit. This should be obvious from the above
algorithrn.

— Symbols that occur more frequently will have shorter Huffman codes than sym-
bols that occur less frequently. Namely, for symbols s; and s, if p; > p; then
i <1, where I; is the number of bits in the codeword for 5;.

— Ithas been shown (see [2]) that the average code length for an information source
S is strictly less than n 4 I. Combined with Eq.(7.5), we have

n<l<ntl (7.6

Extended Huffman Coding. The discussion of Huffman coding so far assigns each

symbol a codeword that has an integer bit length. As stated earlier, log, L indicates the
- « > - . - i

amount of information contained in the information source 5;, which corresponds to the

176 Chapter 7 Lossless Compression Algorithms

number of bits needed to represent it. When a particular symbol 5; has a large probability
(close to 1.0}, log, é will be close to 0, and assigning one bit to represent that symbol will
be costly. Only when the probabilities of all symbols can be expressed as 27% where k isa
positive integer, would the average length of codewords be truly optimal — that is, / = 1.
Clearly, I > 5 in most cases.

One way to address the problem of integral codeword length is to group several symbols
and assign a single codeword to the group. Huffman coding of this type is called Extended
Huffman Coding [2). Assume an information source has alphabet § = {s1, 52, ..., 54}, If
k symbols are grouped together, then the extended alphabet is

k symbols
(3 “ N
SWY = (5181 81, 5181282, vy SISL. . Sny SISE.. 8251, vy SpSp ... Sy}

Note that the size of the new alphabet § &Y isnk. Ifkis relatively large (e.g., k > 3), then
for most practical applications where r > 1, n* would be a very large number, implying a
huge symbol table. This overhead makes Extended Huffman Coding impractical.

As shown in [2], if the entropy of § is 3, then the average number of bits needed for each
symbol in S is now

- 1
n=l<n+o 7

so we have shaved quite a bit from the coding schemes’ bracketing of the theoretical best
limit, Nevertheless, this is not as much of an improvement over the original Huffman coding
(where group size is 1) as one might have hoped for.

7.4.3 Adaptive Huffman Coding

=N
The Huffiman algorithm requires prior statistical knowledge about the information source,
and such information is often not available. This is particularly true in multimedia applica-
tions, where future data is unknown before its arrival, as for example in live (or streaming)
audio and video. Even when the statistics are available, the transmission of the symbol table
could represent heavy overhead.

For the non-extended version of Huffman coding, the above discussion assumes a so-
called order-0 model — that is, symbols/characters were treated singly, without any context
or history maintained. One possible way to include contextual information is to examine
k preceding (or succeeding) symbols each time; this is known as an order-k model. For
example, an order-1 model can incorporate such statistics as the probability of “qu” in
addition to the individual probabilities of “q” and “0”. Nevertheless, this again implies that
much more statistical data has to be stored and sent for the order-k model when k& > 1.

The solution is to use adaptive compression algorithms, in which statistics are gathered
and updated dynamically as the datastream arrives. The probabilities are no longer based
on prior knowledge but or the actual data received so far. The new coding methods are
“adaptive” because, as the probability distribution of the received symbols changes, symbols
will be given new (longer or shorter) codes. This is especially desirable for multimedia
data, when the content (the music or the color of the scene) and hence the stafistics can
change rapidly.

As an example, we introduce the Adaprive Huffman Coding algorithm in this section.
Many ideas, however, are also applicable to other adaptive compression algorithms.

Section 7.4 Variable-Length Coding (VLC) 177

PROCEDURE 7.1 Procedures for Adaptive Huffman Coding

ENCODER DECODER
Initial_code(); Initial_code();
while not EOF while not EOF
{ {
get{c); decode(c);
encode (¢} ; output (c);
update_tree(c); update_tree(c);
} }

e Initial code assigns symbols with some initially agreed-upon codes, without
any prior knowledge of the frequency counts for them. For example, some conven-
tional code such as ASCH may be used for coding character symbols.

¢ update_tree isaprocedure for constructing an adaptive Huffman tree. It basically
does two things: it increments the frequency counts for the symbols (including any
new ones), and updates the configuration of the tree.

— The Huffiman tree must always maintain its sibling property — that is, all nodes
(internal and leaf) are arranged in the order of increasing counts, Nodes are
numbered in order from left to right, bottom to top. (See Figure 7.6, in which
the first node is 1.A:(1), the second node is 2.B:(1), and so on, where the numbers
in parentheses indicates the count.) If the sibling property is about to be violated,
a swap procedure is invoked to update the tree by rearranging the nodes.

— When a swap is necessary, the farthest node with count & is swapped with the
node whose count has just been increased to ¥ -+ 1. Note that if the node with
count N is not a leaf-node — it is the root of a subtree — the entire subtree will
go with it during the swap.

o The encoder and decoder must use exactly the same Tnitial_code and
update_tree routines,

Figure 7.6(a) depicts a Huffman tree with some symbols already received. Figure 7.6(b)
. shows the updated tree after an additional A (i.e., the second A) was received. This increased
the count of As to N + 1 = 2 and triggered a swap. In this case, the farthest node with
count ¥ = 1 was D:(1). Hence, A:(2} and D:(1) were swapped.

Apparently, the same result could also be obtained by first swapping A:(2) with B:(1),
then with C:(1), and finally with D:(1). The problem is that such a procedure would take
three swaps; the rule of swapping with “the farthest node with count N helps avoid such
unnecessary swaps.

178 Chapter 7 Lossless Compression Algorithms

9.(9) 9.(10)

1.A(1) 2.Bi(l) 3.C(1) 4.D«(D LD 2.B:() 3.CAy 4 A2
(a) Huffman tree (b) Receiving 2nd “A” triggered a swap
9. (1)

9. (10} 7. (5+1)
8. P:(5)

5. A3)

1.D:«(1)y 2.Bi(1)y 3.C:(1) 4. A:(2+1) 1.D:(2.B:(1)
{c-1) A swap is needed after receiving 3rd “A” {c-2) Another swap is needed

9.(11)

1. Di(D) 2. Bi(1)
(c-3) The Huffman tree after receiving 3rd “A”
FIGURE 7.6: Node swapping for updating an adaptive Huffman tree: (a) a Huffman tree; (b) receiving

2nd “A” triggered a swap; (c-1) a swap is needed after receiving 3rd “A”; (c-2) another swap is needed;
{c-3) the Huffman tree after receiving 3rd “A”.

Section 7.4 Variable-Length Coding (VLC) 179

The update of the Huffman tree after receiving the third A is more involved and is
illustrated in the three steps shown in Figure 7.6(c-1) to (c-3). Since A:(2) will become
A:(3) (temporarily denoted as A:(2+1)), it is now necessary to swap A:(2+1) with the fifth
node. This is illustrated with an arrow in Figure 7.6(c-1).

Since the fifth node is a non-leaf node, the subtree with nodes 1. D:(1), 2. B:(1), and
5. (2) is swapped as a whole with A:(3). Figure 7.6(c-2) shows the tree after this first swap.
Now the seventh node will become (5+1), which triggers another swap with the eighth node.
Figure 7.6(c-3) shows the Huffman tree after this second swap.

The above example shows an update process that aims to maintain the sibling property
of the adaptive Huffman tree — the update of the tree sometimes requires more than one
swap. When this occurs, the swaps should be executed in multiple steps in a “bottom-up”
manner, starting from the lowest level where a swap is needed. In other words, the update
is carried out sequentially: tree nodes are examined in order, and swaps are made whenever
necessary.

To clearly illustrate more implementation details, let’s examine another example. Here,
we show exactly what bits are sent, as opposed to simply stating how the tree is updated.

EXAMPLE 7.1 Adaptive Huffman Coding for Symbol String AADCCDD

Let’s assume that the initial code assignment for both the encoder and decoder simply
follows the ASCII order for the 26 symbols in an alphabet, A through Z, as Table 7.3
shows, To improve the implementation of the algorithm, we adopt an additional rule: if any
character/symbol is to be sent the first time, it must be preceded by a special symbol, NEW.
The initial code for NEW is 0. The count for NEW is always kept as 0 (the count is never
increased); hence it is always denoted as NEW:(0) in Figure 7.7.

Figure 7.7 shows the Huffman tree after each step. Initially, there is no tree. For the first
A, 0 for NEW and the initial code 00001 for A are sent. Afterward, the tree is built and
shown as the first one, labeled A. Now both the encoder and decoder have constnicted the
same first tree, from which it can be seen that the code for the second A is 1. The code sent
is thus .

After the second A, the tree is updated, shown labeled as AA. The updates after receiving
D and C are similar, More subtrees are spawned, and the code for NEW is getting longer
—- from 0 to 00 to 000.

TABLE 7.3: Initial code assignment for AADCCDD using adaptive Huffman coding.

Initial Code
NEW: 0
A 00001
© B: 00010
C:. 00011
D: 00100

180 Chapter7 Lossless Compression Algorithms

6)) @ (3)

NEW:(0) Al NEW:0) AN2)
NEW:(0) D:(1)
“A’! t(AA,, “AAD”

NEW:.(0) Ci(1) NEW:@) Ci(1+h) NEW:(@) D«I)
“AADC” “AADCC” step 1 “AADCC” step 2

NEW:(0) DD NEW:(0) Tx(2) NEW:(0) A(2)
“AADCC” step 3 “AADCCD” “AADCCDD”

FIGURE 7.7: Adaptive Huffman tree for AADCCDD,

From AADC to AADCC takes two swaps. To illustrate the update process clearly, this
is shown in three steps, with the required swaps again indicated by arrows.

e AADCC Step 1. The frequency count for C is increased from 1 to 1 + 1 = 2; this
necessitates its swap with D:(1).

o AADCC Step 2. After the swap between C and D, the count of the parent node of
C:(2) will be increased from 2 to 2 + 1 = 3; this requires its swap with A:(2).

e AADCC Step 3. The swap between A and the parent of C is completed.

Table 7.4 summarizes the sequence of symbols and code {zeros and ones) being sent to
the decoder, '

Section 7.5 Dictionary-Based Coding 181

TABLE 7.4: Sequence of symbols and codes sent to the decoder

symbol | NEW | 4 |almew] D [new! ¢ [c| DD
Code o |oooor | 1| o [oowo! oo |oootr oot | 101|101

It is important to emphasize that the code for a particular syibol often changes during
the adaptive Huffman coding process. The more frequent the symbol up to the moment, the
shorter the code. For example, after AADCCDD, when the character D overtakes A as the
most frequent symbol, its code changes from 101 to 0. This is of course fundamental for the
adaptive algorithm — codes are reassigned dynamically according to the new probability
distribution of the symbols.

The “Squeeze Page™ on this book’s web site provides a Java applet for adaptive Huffman
coding that should aid you in learning this algorithm. .

7.5 DICTIONARY-BASED CODING

The Lempel-Ziv-Welch (LZW) algorithm employs an adaptive, dictionary-based compres-
sion technique. Unlike variable-length coding, in which the lengths of the codewords are
different, LZW uses fixed-length codewords to represent variable-length strings of sym-
bols/characters that commonly cccur together, such as words in English text.

As in the other adaptive compression techniques, the LZW encoder and decoder builds
up the same dictionary dynamically while receiving the data — the encoder and the decoder
both develop the same dictionary. Since a single code can now represent more than one
symbol/character, data compression is realized.

LZW proceeds by placing longer and longer repeated entrics into a dictionary, then
emitting the code for an element rather than the string itself, if the element has already been
placed in the dictionary. The predecessors of LZW are LZ77 [9] and LZ78 [10], due to Jacob
Ziv and Abraham Lempel in 1977 and 1978. Teity Welch [11] improved the technique in
1984, LZW is used in many applications, such as UNIX compress, GIF for images, V.42
bis for modems, and others.

ALGORITHM 7.2 LZW COMPRESSION

BEGIN
8 = next input character;
while not EOF
{

¢ = next input character;

if s + ¢ exists in the dictionary
s =8 + C;

182 Chapter? Lossless Compression Algorithms

else
{
output the code for s;
add string s + ¢ to the dictionary with a new code;

s = C;
}
}
output the code for s;

END

EXAMPLE 7.2 LZW Compression for String ABABBABCABABEA

Let’s start with a very simple dictionary (also referred to as a string table), initially containing
only three characters, with codes as follows:

code atring
1 A
2 B
3 C

Now ifthe input string is ABABBABCABABBA, the LZW compression algorithm works

as follows:
s lo: output code string
1 A
2 B
3 C
A B 1 4 AB
B Y 2 5 BA
A B
AB B 4 6 ABB
B A
BA B 5 7 BAB
, B C 2 8 BC
c A 3 9 CA
A B
AB A 4 10 ABA
A B
AR B
ABB A) 11 ABB2Z

o
=
O
|
=

Section 7.5 Dictionary-Based Coding 183

The output codes are 1 24 52 3 4 6 1. Instead of 14 characters, only 9 codes need to be
sent, If we assume each character or code is transmitted as a byte, that is quite a saving (the
compression ratio would be 14/9 =1.56). (Remember, the LZW is an adaptive algorithm,
in which the encoder and decoder independently build their own string tables. Hence, there
is no overhead involving transmitting the string table.)

Obviocusly, for our illustration the above example is replete with a great deal of redundancy
in the input string, which is why it achieves compression so quickly. In general, savings for
LZW would not come until the text is more than a few hundred bytes long,

The above LZW algorithm is simple, and it makes no effort in selecting optimal new
strings to enter into its dictionary. As a result, its string table grows rapidly, as illustrated
above. A typical LZW implementation for textual data uses a 12-bit codelength. Hence,
its dictionary can contain wp to 4,096 entries, with the first 256 (0—255) entries being
ASCII codes. X we take this into account, the above compression ratio is reduced to
(14 x 8)/(9 x 12) = 1.04.

ALGORITHM 7.3 LZwW DECOMPRESSION (SIMPLE VERSION)

BEGIN
s = NIL;
while not EOF
{
k = next input code;
entry = dictionary entry for k;
output entry;
if (s != NIL)
add string s + entry[0] to dictionary
with a new code;
s = entry;
}
END

EXAMPLE 7.3 LZW decompression for string ABABBABCABABBA

Input codes to the decoderare 1 24 523 4 6 1. The initial string table is identical to what
is used by the encoder.
The LZW decompression algorithm then works as follows:

s k entry/output code string
1 A
2 B
3 C

184 Chapter?7

Lossless Compression Algorithms

A 2 B 4 AB

B 4 AB 5 BA

AB 5 BA 6 ABB

BA 2 B 7 BAB

B 3 C 8 BC

C 4 AR 9 CA

AB 6 ABB 10 ABA

ABB i A 11 ABBA
A BEOF

Apparently the output string is ABABBABCABABBA — a truly lossless result!

LZW Algorithm Details A more careful examination of the above simple version of
the LZW decompression algorithun will reveal a potentiat problem. In adaptively updating
the dictionaries, the encoder is sometimes ahead of the decoder. For example, after the
sequence ABABR, the encoder will output code 4 and create a dictionary entry with code
6 for the new string ABB.

On the decoder side, after receiving the code 4, the output will be AB, and the dictionary
is updated with code 5 for a new string, BA. This occurs several times in the above example,
such as after the encoder outputs another code 4, code 6. Tn a way, this is anticipated —
after all, it is a sequential process, and the encoder had to be ahead. In this example, this
did not cause problem.

‘Welch [11] points out that the simple version of the LZW decompression algorithm will
break down when the following scenario occurs. Assume that the input string is ABAB-
BABCABBABBAX....

The LZW encoder:
s c output code string
1 A
2 B
3 C
A B 1 4 AB
B A 2 5 BA
A B
AB B 4 6 ABB
, B A
BA B 5 7 BAB
B C 2 8 BC
C A 3 9 CA '
A B
AB B

Section 7.5 Dictionary-Based Coding 185

ABB A & 10 ABBA
A B
AB B
ABB A ,
ABBA X 10 11 ABBAX

The sequence of cutput codes from the encoder (and hence the input codes for the decoder)
is124523610....

The simple LZW decoder:
s k entry/output code string

1 A
2 B
3 C

NIL 1 A
A 2 B 4 AR
B 4 AB 5 BA
AB 5 BA 6 ABB
BA 2 B 7 BAB
B 3 C 8 BC
C 6 ABB 9 CA

ABB 10 77

“277" indicates that the decoder has encountered a difficulty: no dictionary entry exists
for the last input code, 10. A closer examination reveals that code 10 was most recently
created at the encoder side, formed by a concatenation of Character, String, Character. In
this case, the character is A, and string is BB — that is, A + BB + A. Meanwhile, the
sequence of the output symbols from the encoder are A, BB, A, BB, A.

This example illustrates that whenever the sequence of symbols to be coded is Character,
String, Character, String, Character, and s0 on, the encoder will create a new code to
represent Character -+ String 4+ Character and use it right away, before the decoder has had
a chance to create it!

Fortunately, this is the only case in which the above simple LZW decompression algo-
rithm will fail. Also, when this occurs, the variable s = Character 4- String. A modified
version of the algorithm can handle this exceptional case by checking whether the input
code has been defined in the decoder’s dictionary. If not, it will simply assume that the code
represents the symbols 5 4- s[0]; that is Character -+ Stiing + Character.

