Scripting Element Example
Comment <%-- comment --%>
Directive <%@ directive %>
Declaration <%! declarations %>
Scriptlet <% scriplets %>
Expression <%= expression %>

Types of JSP Scripting Elements

JSP scripting elements let you insert Java code into the servlet that will
be generated from the JSP page. There are three forms:

1- Expressions of the form, which are evaluated and inserted into the
servlet’s output.

2- Scriptlets of the form, which are inserted into the servlet’s _jspService
method (called by service).

3- Declarations of the form, which are inserted into the body of the servlet
class, outside any existing methods.

JSP Expressions

A]SP expression is used to insert values directly into the output. It has the
following form:

<% = Java Expression %>.

The expression is evaluated, converted to a string, and inserted in the page. This
evaluation is performed at runtime (when the page is requested) and thus has
full access to information about the request.

For example, the following shows the date/time that the page was requested.
Current time: <% = java.util.Date() %>

Predefined Variables

To simplify these expressions, you can use a number of predefined variables (or
“implicit objects”). The system simply tells you what names it will use for the

Scanned with CamScanner

local variables in _jspService (the method that replaces doGet in servlets that
result from JSP pages). These implicit objects are these:

1- request, the HttpServletRequest.
2- response, the HttpServletResponse.

3- session, the HttpSession associated with the request (unless disabled with
the session attribute of the page directive—see Section 12.4).

4- out, the Writer (a buffered version of type JspWriter) used to send output to
the client.

5- application, the ServletContext. This is a data structure shared by all
servlets and JSP pages in the Web application and is good for storing
shared data.

Host Name : <% = request.getRemoteHost() %>

JSP/Servlet Correspondence

JSP expressions basically become print (or write) statements in the servlet that
results from the JSP page. Whereas regular HTML becomes print statements with
double quotes around the text, JSP expressions become print statements with no
double quotes. Instead of being placed in the doGet method, these print
statements are placed in a new method called _jspService() that is called by
service for both GET and POST requests.

FileName: LuckyNumber.jsp

<html>
<body>

Your Luck Number is: <% = Math.random() %>
<body>

<html>

FileName: LuckyNumber.java

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

Scanned with CamScanner

HttpSession session = request.getSession();
JspWriter out = response.getWriter();

out.printin ("<html><body>");
out.printin ("Your Luck Number is :");
out.printin (Math.random());
out.printin ("<body><htmI|>");

}

Servlet and Corresponding JSP

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ThreeParams extends HttpServilet

{
public void doGet(HttpServietRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter(); String
title = "Reading Request Parameters";

out.printin(*<html><head> <title>" + title + “</title></head> \n");
“<Body bgcolor = \"#F4F5E3\"” > \n \n" +
“ User Name:” +
request.getParameter(“userName”) + " \n” +
“ Department:” +
request.getParameter(“deptName”) + " \n” +
“ \n </Body> \ n <html|>");

/s

}

Corresponding JSP

<html>
<head>

<title>Reading Request Parameters </title>
</head>
<Body bgcolor = #F4F5E3 >

 User Name: <%= request.getParameter(“userName”) %>

 Department: <%= request.getParameter(“deptName”) %>

</Body>

Scanned with CamScanner

<htmlI>

JSP scriptlet tag
A scriptlet tag is used to execute java source code in JSP. Syntax is as follows:

<% java source code %>

Example of JSP scriptlet tag
In this example, we are displaying a welcome message.

<html|>
<body>

<% out.print("welcome to jsp");
%> </body>

</html|>

Example of JSP scriptlet tag that prints the user name

In this example, we have created two files index.html and welcome.jsp. The
index.html file gets the username from the user and the welcome.jsp file
prints the username with the welcome message.

File: index.html

<htmlI>
<body>
<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
</body>
</html>

File: welcome.jsp
<html|>
<body>
<form>

Scanned with CamScanner

<%
String name=request.getParameter("uname");
out.print("welcome "+name);
%>
</form>
</body>
</html>

JSP Include Directive

The include directive is used to include the contents of any resource it may be
jsp file, html file or text file. The include directive includes the original content of
the included resource at page translation time (the jsp page is translated only
once so it will be better to include static resource).

Advantage of Include directive:- Code Reusability

Syntax of include directive

<%@ include file="resourceName" %>

Example of include directive

In this example, we are including the content of the header.html file. To run this
example you must create an header.html file.

<html>
<body>
<%@ include file="Header.html|" %>
Today is: <%= java.util.Calendar.getInstance().getTime() %>
</body>
</html|>

<% @ include file="filename” %> is the JSP include directive.

At JSP page translation time, the content of the file given in the include directive
is ‘pasted’ as it is, in the place where the JSP include directive is used. Then the
source JSP page is converted into a java Servlet class. The included file can be a
static resource or a JSP page. Generally JSP include directive is used to include
header banners and footers.

The JSP compilation procedure is that, the source JSP page gets compiled only if
that page has changed. If there is a change in the included JSP file, the source
JSP file will not be compiled and therefore the modification will not get reflected
in the output.

<jsp:include page="relativeURL"” /> is the JSP include action element.

When the included JSP page is called, both the request and response objects are
passed as parameters.

Scanned with CamScanner

If there is a need to pass additional parameters, then <jsp:param> element can
be used. If the resource is static, its content is inserted into the calling ISP file,
since there is no processing needed.

Example: Passing Parameter in <jsp:include>

<html|> <head> <title>]SP include with parameters</title></head>
<body>

<jsp:include page="InstituteList.jsp" >
<jsp:param name="governingBody" value="Government" />
<jsp:param name="instituteType" value="Polytechnic" />
<jsp:param name="insttituteLocation" value="Lohaghat" />
</jsp:include>
</body>
</html>

JSP Action Tags Description

1. jsp:forward Forwards the request & response to other resource.

2. jsp:include Includes another resource.

3. jsp:useBean Creates or locates bean object.

4. jsp:setProperty Sets the value of property in bean object.

5. jsp:getProperty Prints the value of property of the bean.

6. jsp:plugin Embeds another components such as applet.
7.jsp:param Sets the parameter values used in forward and include.
Java Beans

A JavaBean is a specially constructed Java class written in the Java and coded
according to the JavaBeans API specifications. Following are the unique
characteristics that distinguish a JavaBean from other Java classes -

1. It provides a default, no-argument constructor.

2. It should be serializable and that which can implement the Serializable
interface.

3. It may have a number of properties which can be read or written.

4. It may have a number of "getter" and "setter" methods for the properties.

The <jsp:useBean> action tag is used to locate or instantiate a bean class. If
bean object of the Bean class is already created, it doesn't create the bean
depending on the scope. But if object of bean is not created then it
instantiates the bean.

Syntax of jsp:useBean action tag

Scanned with CamScanner

