Addressing modes in 8085 microprocessor

Prerequisite – Addressing modes
The way of specifying data to be operated by an instruction is called addressing mode.

Types of addressing modes –
In 8085 microprocessor there are 5 types of addressing modes:

1. Immediate Addressing Mode –
In immediate addressing mode the source operand is always data. If the data is 8-bit, then the instruction will be of 2 bytes, if the data is of 16-bit then the instruction will be of 3 bytes.

Examples:
MVI B 45 (move the data 45H immediately to register B)
LXI H 3050 (load the H-L pair with the operand 3050H immediately)
JMP address (jump to the operand address immediately)

2. Register Addressing Mode –
In register addressing mode, the data to be operated is available inside the register(s) and register(s) is(are) operands. Therefore the operation is performed within various registers of the microprocessor.

Examples:
MOV A, B (move the contents of register B to register A)
ADD B (add contents of registers A and B and store the result in register A)
INR A (increment the contents of register A by one)

3. Direct Addressing Mode –
In direct addressing mode, the data to be operated is available inside a memory location and that memory location is directly specified as an operand. The operand is directly available in the instruction itself.

Examples:
LDA 2050 (load the contents of memory location into accumulator A)
LHLD address (load contents of 16-bit memory location into H-L register pair)
IN 35 (read the data from port whose address is 01)

4. Register Indirect Addressing Mode –
In register indirect addressing mode, the data to be operated is available inside a memory location and that memory location is indirectly specified by a register pair.

Examples:
MOV A, M (move the contents of the memory location pointed by the H-L pair to the accumulator)
LDAX B (move contains of B-C register to the accumulator)
LXIH 9570 (load immediate the H-L pair with the address of the location 9570)

5. Implied/Implicit Addressing Mode –
In implied/implicit addressing mode the operand is hidden and the data to be operated is available in the instruction itself.

Examples:
CMA (finds and stores the 1’s complement of the contains of accumulator A in A)
RRC (rotate accumulator A right by one bit)
RLC (rotate accumulator A left by one bit)
INSTRUCTION FORMAT

An instruction (instruction format) is a command to the microprocessor to perform a given task on a particular data. Each instruction (instruction format) is of two parts. One is task to be performed, called the operation code or opcode and the second one is the data to be operated on, called the operand. The operands or data can be specified in different ways. It may include an 8-bit or 16-bit data, an internal register. a memory location, or 8-bit or 16-bit address. In some instructions, the operand is implicit.

Instruction Word Size

The 8085 instruction set is of three groups according to word size:

· One-word or one-byte instructions.
· Two-word or two-byte instructions.
· Three-word or three-byte instructions.
In the 8085 microprocessor, byte and words are synonymous because it is an 8-bit microprocessor. But, instructions are commonly referred to in terms of bytes rather than words.

One-byte instructions

A one-byte instruction includes a opcode and a operand in the same byte. Operand(s) are internal registers and are in the instruction in form of codes. If there is no numeral present in the instruction then that instruction will be of one-byte, for example, MOV C, A, RAL, and ADD B, etc. Table M.1 shows examples of one-byte instruction.

	Task
	Opcode
	Operand
	Binary Code
	Hex code

	Copy the content of accumulator in
the register C.
	MOV
	C, A
	0100 1111
	4FH

	Add the contents of register B to
the contents of the accumulator.
	ADD
	B
	1000 0000
	80H

	Invert each bit in the accumulator.
	CMA
	None
	0010
	2FH


Table M.1 shows the example of one-byte instruction
These instructions are of one-byte performing three different tasks. In the first instruction, operand and registers are specified. In the second instruction, the operand B is specific and the accumulator is not there. Similarly, in the third instruction, the accumulator is assume to be the implicit operand. These instructions are in 8-bit binary format in the memory and each requires one memory location.

Two-byte instructions

In a two-byte instruction, the first byte specifies the operation code and second byte specifies the operand. Source operand is a data byte and immediately following the opcode. If an 8-bit numeral is present in the instruction then that instruction will be of two-byte. Here, the numeral may be a data or an address. For example, in MVI A, 35H and IN 29H, etc. In a two-byte instruction, the first byte will be the opcode and the second byte will be for the numeral present in the instruction.

	Task
	Opcode
	Operand
	Binary code
	Hex code

	Load an 8-bit data byte
in the accumulator.
	MVI
	A 35H
	0011 1110
0011 0101
	3EH First byte
35H Second byte


Table M.2 shows the example of two-byte instruction
Three-byte instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two bytes specify the 16-bit operand. The second byte is the low-order operand and the third byte is the high-order operand. If a 16-bit numeral is present in the instruction then that instruction will be of three-byte. Here, the numeral may be a data or an address, for example, in LXI H,3500H and STA 2500H, etc.

	Task
	Opcode
	Operand
	Binary code
	Hex code

	Transfer the program
sequence to the memory
location 2085h
	JMP

	2550H

	1100 0011
0101 0000
0010 0101
	C3 First byte
50 Second byte
25 Third byte


Table M.3 shows the example of three-byte instruction
Opcode Format

In the case of microprocessor, the instruction or operation are specified by using specific bit pattern unique for each instruction. These bit patterns contain all the information about operation, register used, memory to. The register and register pair are specified by using certain combination of bits. These combinations of bits are in table below.

	Register
	Code

	B
	000

	C
	001

	D
	010

	E
	011

	H
	100

	L
	101

	M
	110

	A
	111


Table M.4 shows Bit combination of Registers
	Register pair
	Code

	BC
	00

	DE
	001

	HL
	10

	AF or SP
	11


Table M.5 shows Bit combination of Registers

Difference between CALL and JUMP instructions

CALL instruction is used to call a subroutine. Subroutines are often used to perform tasks that need to be performed frequently. The JMP instruction is used to cause the PLC (Programmable Logic Control) to skip over rungs.

The differences Between CALL and JUMP instructions are:

	SERIAL NO.
	JUMP
	CALL

	1.
	Program control is transferred to a memory location which is in the main program
	Program Control is transferred to a memory location which is not a part of main program

	2.
	Immediate Addressing Mode
	Immediate Addressing Mode + Register Indirect Addressing Mode

	3.
	Initialisation of SP(Stack Pointer) is not mandatory
	Initialisation of SP(Stack Pointer) is mandatory

	4.
	Value of Program Counter(PC) is not transferred to stack
	Value of Program Counter(PC) is transferred to stack

	5.
	After JUMP, there is no return instruction
	After CALL, there is a return instruction

	6.
	Value of SP does not changes
	Value of SP is decremented by 2

	7.
	10 T states are required to execute this instruction
	18 T states are required to execute this instruction

	8.
	3 Machine cycles are required to execute this instruction
	5 Machine cycles are required to execute this instruction



Difference between SIM and RIM instructions in 8085 microprocessor:
	SR. NO.
	SIM INSTRUCTION
	RIM INSTRUCTION

	1
	SIM stands for Set Interrupt Mask.
	RIM stands for Read Interrupt Mask.

	2
	It is responsible for masking/unmasking of RST 7.5, RST 6.5 and RST 5.5.
	It checks whether RST 7.5, RST 6.5, RST 5.5 are masked or not.

	3
	It resets to 0 RST 7.5 flip flop.
	It checks whether interrupts are enabled or not and to check whether RST 7.5, RST 6.5 or RST 5.5 interrupts are pending or not.

	4
	The content of the Accumulator decides the action to be taken. So before executing the SIM instruction, it is mandatory to initialize Accumulator with the required value.
	The contents of the Accumulator after the execution of the RIM instruction provide this information.Thus, it is essential to look into the Accumulator contents after the RIM instruction is executed.

	5
	SIM instruction can be used for serial output of data.
	RIM instruction can be used for serial input of data.

	6
	Its opcode(in Hex) is 30.
	Its opcode(in Hex) is 20.


[image: image1]
[image: image2]
3

